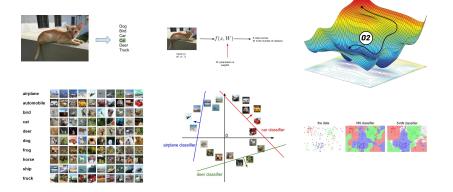


Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

So far in the course...

- Image classification: elementary task in CV
- Linear classifier: scoring and loss functions
- Optimization: Gradient descent



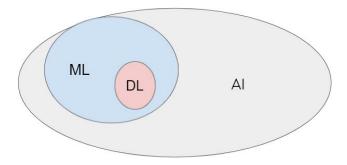
What is DL?

• Subset of ML that is essentially neural networks with more layers

What is DL?

- Subset of ML that is essentially neural networks with more layers
- "Crude" attempt to imitate the human brain in learning

What is DL?



- Classical ML: Handcrafted features + learnable model
- Need strong domain expertise

Classical ML vs. DL

- Classical ML: Handcrafted features + learnable model
- Need strong domain expertise

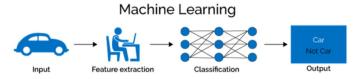


Figure credits: Jay Shaw & Quora

Deep Learning: Deep stack of parameterized processing (NN layers)
End-to-End learning

- Deep Learning: Deep stack of parameterized processing (NN layers)
- End-to-End learning

Figure credits: Jay Shaw & Quora

- ANNs predate some of the classical ML techniques
- We are now dealing with a new generation ANNs

Neuron

${\scriptstyle \bullet} \,$ About 100 billion neurons in human brain

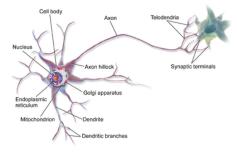


Figure credits: Wikipedia

Dr. Konda Reddy Mopuri

• McCulloch Pitts neuron (1943) - Threshold Logic Unit

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- Donald Hebb (1949) Hebbian Learning Principle

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- Donald Hebb (1949) Hebbian Learning Principle
- Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- Donald Hebb (1949) Hebbian Learning Principle
- Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- Donald Hebb (1949) Hebbian Learning Principle
- Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images
- David H Hubel and Torsten Wiesel (1959) demonstrated orientation selectivity and columnar organization in cat's visual cortex

- McCulloch Pitts neuron (1943) Threshold Logic Unit
- Donald Hebb (1949) Hebbian Learning Principle
- Marvin Minsky (1951) created the first ANN (Hebbian Learning, 40 neurons)
- Frank Rosenblatt (1958) created perceptron to classify 20X20 images
- David H Hubel and Torsten Wiesel (1959) demonstrated orientation selectivity and columnar organization in cat's visual cortex
- Paul Werbos (1982) proposed back-propagation for ANNs

Deep Learning

 Natural generalization to ANNs - Doesn't differ much from the 90s NNs

Deep Learning

- Natural generalization to ANNs Doesn't differ much from the 90s NNs
- Computational graph of tensor operations that take advantage of
 - Chain rule (back-propagation)
 - SGD
 - GPUs
 - Huge datasets
 - Convolutions, etc.

ILSVRC Error

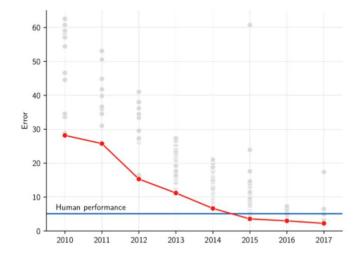


Figure credits: Gershgorn, 2017

Dr. Konda Reddy Mopuri

• Huge research and progress in ML

- Huge research and progress in ML
- Hardware developments CPUs/GPUs/Storage technologies

- Huge research and progress in ML
- Hardware developments CPUs/GPUs/Storage technologies
- Piles of data over the Internet

- Huge research and progress in ML
- Hardware developments CPUs/GPUs/Storage technologies
- Piles of data over the Internet
- Collaborative development (open source tools and forums for sharing/discussions, etc)

- Huge research and progress in ML
- Hardware developments CPUs/GPUs/Storage technologies
- Piles of data over the Internet
- Collaborative development (open source tools and forums for sharing/discussions, etc)
- Collective efforts from large institutions/corporations

• . . .

- We have been doing a lot of ML already
 - Taxonomy of ML concepts: Classification, regression, generative models, clustering, etc.
 - Rich statistical formalizations: Bayesian estimation, PAC, etc.
 - Understood fundamentals: Bias-Variance, VC dimension, etc.
 - Good understanding of optimization
 - Efficient large-scale algorithms

• Doesn't require a deep mathematical grasp(!?)

- Doesn't require a deep mathematical grasp(!?)
- Makes the design of large models a system/software development task

- Doesn't require a deep mathematical grasp(!?)
- Makes the design of large models a system/software development task
- Leverages modern hardware

- Doesn't require a deep mathematical grasp(!?)
- Makes the design of large models a system/software development task
- Leverages modern hardware
- Doesn't seem to plateau with more data

- Doesn't require a deep mathematical grasp(!?)
- Makes the design of large models a system/software development task
- Leverages modern hardware
- Doesn't seem to plateau with more data
- Makes the trained models a commodity

Compute getting cheaper

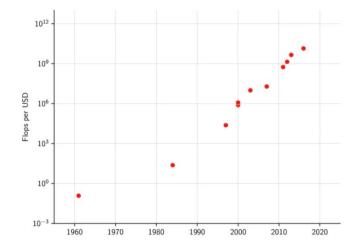


Figure Credits: Wikipedia

Dr. Konda Reddy Mopuri

Storage getting cheaper

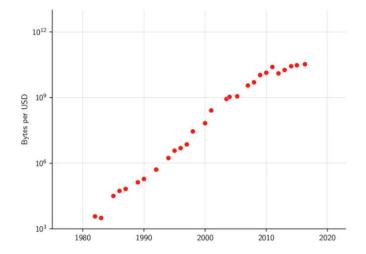


Figure Credits: John C Mccallum

Dr. Konda Reddy Mopuri

AlexNet to AlphaGo: 300000X increase in compute

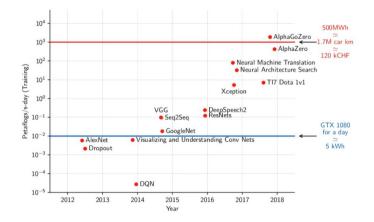


Figure Credits: Radford, 2018. 1 petaflop/s-day \approx 100 GTX 1080 GPUs for a day, \approx 500kwh

Dr. Konda Reddy Mopuri

Datasets

Data-set		Year	Nb. images	Size	
MNIST	(classification)	1998	60K	12Mb	-
Caltech 101	(classification)	2003	9.1K	130Mb	
Caltech 256	(classification)	2007	30K	1.2Gb	
CIFAR10	(classification)	2009	60K	160Mb	
ImageNet	(classification)	2012	1.2M	150Gb	
MS-COCO	(segmentation)	2015	200K	32Gb	
Cityscape	(segmentation)	2016	25K	60Gb	

Data-set		Year	Size
SST2	(sentiment analysis)	2013	20Mb
WMT-18	(translation)	2018	7Gb
OSCAR	(language model)	2020	6Tb

Figure Credits: François Fleuret

Implementation

	Language(s)	License	Main backer
PyTorch	Python, C++	BSD	Facebook
TensorFlow	Python, C++	Apache	Google
JAX	Python	Apache	Google
MXNet	Python, C++, R, Scala	Apache	Amazon
CNTK	Python, C++	MIT	Microsoft
Torch	Lua	BSD	Facebook
Theano	Python	BSD	U. of Montreal
Caffe	C++	BSD 2 clauses	U. of CA, Berkeley

Figure Credits: François Fleuret

We use PyTroch for this course

O PyTorch

http://pytorch.org

Dr. Konda Reddy Mopuri

dl4cv-3/Neural Networks and Deep Learning

• First Mathematical Model for a neuron

- First Mathematical Model for a neuron
- $\bullet~\mbox{McCulloch}$ and Pitts, $1943 \rightarrow \mbox{MP}$ neuron

- First Mathematical Model for a neuron
- $\bullet~{\rm McCulloch}$ and Pitts, $1943 \rightarrow {\rm MP}$ neuron
- Boolean inputs and output

$$f(x) = \mathbb{1}(w\sum_{i} x_i + b \ge 0) \tag{1}$$

• let's implement simple functions

- let's implement simple functions
- NOT

- let's implement simple functions
- NOT
 - $\bullet \ \operatorname{NOT}(x) = \mathbbm{1}(-x + 0.5 \geq 0)$

• let's implement simple functions

NOT

•
$$NOT(x) = 1(-x + 0.5 \ge 0)$$

OR

• let's implement simple functions

NOT

•
$$NOT(x) = \mathbb{1}(-x + 0.5 \ge 0)$$

OR

•
$$OR(x, y) = \mathbb{1}(x + y - 0.5 \ge 0)$$

• let's implement simple functions

NOT

•
$$NOT(x) = 1(-x + 0.5 \ge 0)$$

OR

•
$$OR(x, y) = \mathbb{1}(x + y - 0.5 \ge 0)$$

AND

• let's implement simple functions

NOT

•
$$NOT(x) = 1(-x + 0.5 \ge 0)$$

OR

$$\bullet \ \mathsf{OR}(x,y) = \mathbbm{1}(x+y-0.5 \geq 0)$$

AND

•
$$AND(x, y) = \mathbb{1}(x + y - 1.5 \ge 0)$$

• Can realize any Boolean function using TLUs

- Can realize any Boolean function using TLUs
- What one unit does? Learn linear separation

- Can realize any Boolean function using TLUs
- What one unit does? Learn linear separation
- No learning; heuristics approach

• Frank Rosenblatt 1957 (American Psychologist)

- Frank Rosenblatt 1957 (American Psychologist)
- Very crude biological model

- Frank Rosenblatt 1957 (American Psychologist)
- Very crude biological model
- Similar to MP neuron Performs linear classification

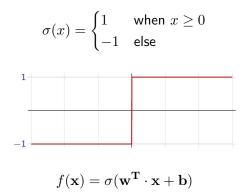
- Frank Rosenblatt 1957 (American Psychologist)
- Very crude biological model
- Similar to MP neuron Performs linear classification
- Inputs can be real, weights can be different for different i/p components

- Frank Rosenblatt 1957 (American Psychologist)
- Very crude biological model
- Similar to MP neuron Performs linear classification
- Inputs can be real, weights can be different for different i/p components

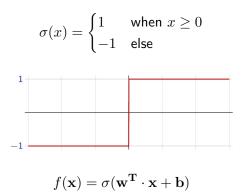
۲

$$f(x) = \begin{cases} 1 & \text{when } \sum_i w_i x_i + b \geq 0 \\ 0 & \text{else} \end{cases}$$

• For simplicity we consider +1 and -1 responses



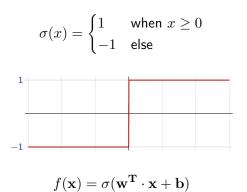
• For simplicity we consider +1 and -1 responses



 $\bullet\,$ In general, $\sigma(\cdot)$ that follows a linear operation is called an activation function

Dr. Konda Reddy Mopuri

• For simplicity we consider +1 and -1 responses



- \bullet In general, $\sigma(\cdot)$ that follows a linear operation is called an activation function
- ullet w are referred to as weights and b as the bias

Dr. Konda Reddy Mopuri

dl4cv-3/Neural Networks and Deep Learning

• Perceptron is more general computational model

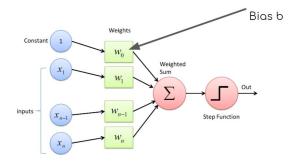
- Perceptron is more general computational model
- Inputs can be real

- Perceptron is more general computational model
- Inputs can be real
- Weights are different on the input components

- Perceptron is more general computational model
- Inputs can be real
- Weights are different on the input components
- Mechanism for learning weights!

Weights and Bias

• Why are the weights important?



Dr. Konda Reddy Mopuri

dl4cv-3/Neural Networks and Deep Learning

Weights and Bias

- Why are the weights important?
- Why is it called 'bias'? What does it capture?

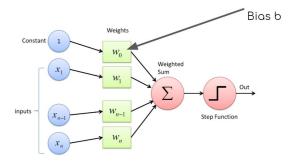


Figure credits: DeepAI

Dr. Konda Reddy Mopuri

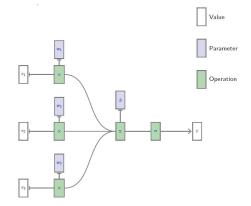


Figure credits: François Fleuret

Dr. Konda Reddy Mopuri

dl4cv-3/Neural Networks and Deep Learning

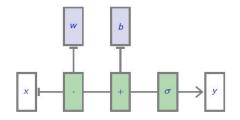


Figure credits: François Fleuret

Dr. Konda Reddy Mopuri

dl4cv-3/Neural Networks and Deep Learning

• Training data $(x_n,y_n) \in \mathcal{R}^D \times -1, 1, n=1,\ldots,N$

- Training data $(x_n, y_n) \in \mathcal{R}^D \times -1, 1, n = 1, \dots, N$
- Start with $\mathbf{w} = \mathbf{0}$

- Training data $(x_n,y_n) \in \mathcal{R}^D \times -1, 1, n=1,\ldots,N$
- Start with $\mathbf{w} = \mathbf{0}$
- While $\exists n_k$ such that $y_{nk}(\mathbf{w}_k^T \cdot \mathbf{x_{nk}}) \leq \mathbf{0}$, update $\mathbf{w}_{k+1} = \mathbf{w}_k + \mathbf{y_{nk}} \cdot \mathbf{x_{nk}}$

- \bullet Training data $(x_n,y_n) \in \mathcal{R}^D \times -1, 1, n=1,\ldots,N$
- Start with $\mathbf{w} = \mathbf{0}$
- While $\exists n_k$ such that $y_{nk}(\mathbf{w}_k^T \cdot \mathbf{x_{nk}}) \leq \mathbf{0}$, update $\mathbf{w_{k+1}} = \mathbf{w_k} + \mathbf{y_{nk}} \cdot \mathbf{x_{nk}}$
- Note that the bias b is absorbed as a component of w and x is appended with 1 suitably

Colab Notebook: Perceptron

• Convergence result: Can show that after some iterations, no training sample gets misclassified

- Convergence result: Can show that after some iterations, no training sample gets misclassified
- Stops as soon as it finds a separating boundary

- Convergence result: Can show that after some iterations, no training sample gets misclassified
- Stops as soon as it finds a separating boundary
- Other algorithms maximize the margin from boundary to the samples

Next lecture..

• More on NNs: MLP, ...