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So far in the course...

o Image classification: elementary task in CV
o Linear classifier: scoring and loss functions

o Optimization: Gradient descent
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o Subset of ML that is essentially neural networks with more layers
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What is DL?

o Subset of ML that is essentially neural networks with more layers

o “Crude” attempt to imitate the human brain in learning
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What is DL?
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Classical ML vs. DL

o Classical ML: Handcrafted features + learnable model

o Need strong domain expertise
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Classical ML vs. DL

o Classical ML: Handcrafted features + learnable model

o Need strong domain expertise
Machine Learning

T

Input Feature extraction Classification

Figure credits: Jay Shaw & Quora
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Classical ML vs. DL

o Deep Learning: Deep stack of parameterized processing (NN layers)

o End-to-End learning
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Classical ML vs. DL

o Deep Learning: Deep stack of parameterized processing (NN layers)

o End-to-End learning

& — 3tz — [l

Input Feature extraction + Classification Output

Figure credits: Jay Shaw & Quora
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Classical ML vs. DL

o ANNs predate some of the classical ML techniques
o We are now dealing with a new generation ANNs
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Neuron

o About 100 billion neurons in human brain

Cell

Endoplasmic

Figure credits: Wikipedia
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History of Neural Networks

o McCulloch Pitts neuron (1943) - Threshold Logic Unit
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History of Neural Networks

o McCulloch Pitts neuron (1943) - Threshold Logic Unit
o Donald Hebb (1949) - Hebbian Learning Principle
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History of Neural Networks ‘C\

o McCulloch Pitts neuron (1943) - Threshold Logic Unit
o Donald Hebb (1949) - Hebbian Learning Principle

o Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)
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History of Neural Networks ‘C\

o McCulloch Pitts neuron (1943) - Threshold Logic Unit
o Donald Hebb (1949) - Hebbian Learning Principle

o Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)

o Frank Rosenblatt (1958) - created perceptron to classify 20X20
images

o David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex

o Paul Werbos (1982) proposed back-propagation for ANNs
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o Natural generalization to ANNs - Doesn't differ much from the 90s
NNs
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Deep Learning

o Natural generalization to ANNs - Doesn't differ much from the 90s
NNs

o Computational graph of tensor operations that take advantage of
Chain rule (back-propagation)

SGD

GPUs

Huge datasets

Convolutions, etc.

© 06 06 0 o
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ILSVRC Error

40

Error

Human performance
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Figure credits: Gershgorn, 2017
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What makes it work now?

o Huge research and progress in ML
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What makes it work now?

o Huge research and progress in ML

o Hardware developments - CPUs/GPUs/Storage technologies
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What makes it work now?

Huge research and progress in ML
Hardware developments - CPUs/GPUs/Storage technologies

©

©

Piles of data over the Internet

(+]

Collaborative development (open source tools and forums for
sharing/discussions, etc)

©
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What makes it work now?

©

Huge research and progress in ML

Hardware developments - CPUs/GPUs/Storage technologies

©

Piles of data over the Internet

(+]

©

Collaborative development (open source tools and forums for
sharing/discussions, etc)

o Collective efforts from large institutions/corporations
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What makes it work now?

o We have been doing a lot of ML already

o Taxonomy of ML concepts: Classification, regression, generative
models, clustering, etc.
Rich statistical formalizations: Bayesian estimation, PAC, etc.
Understood fundamentals: Bias-Variance, VC dimension, etc.
Good understanding of optimization
Efficient large-scale algorithms

© © 0 o
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Deep Learning - practical perspective

o Doesn't require a deep mathematical grasp(!?)

dl4cv-3/Neural Networks and Deep Learning

Dr. Konda Reddy Mopuri

£

Ul 7
o 5,
>,

%
of Technd

AN

kg
%

2

“Wahari.

<

16



T 7y,
EpusRiG

&3

P
o 7,
“ahagi . @

<

Deep Learning - practical perspective

o Doesn't require a deep mathematical grasp(!?)
o Makes the design of large models a system /software development task
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Deep Learning - practical perspective
o Doesn't require a deep mathematical grasp(!?)
o Makes the design of large models a system /software development task

o Leverages modern hardware
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Doesn't require a deep mathematical grasp(!?)
Makes the design of large models a system/software development task
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Leverages modern hardware

©

Doesn't seem to plateau with more data
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Deep Learning - practical perspective

Doesn't require a deep mathematical grasp(!?)
Makes the design of large models a system/software development task

©

(]

Leverages modern hardware

©

Doesn't seem to plateau with more data

Makes the trained models a commodity

©

©

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning

e
ati- 5

16



Compute getting cheaper
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Storage getting cheaper
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AlexNet to AlphaGo: 300000X increase
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Figure Credits: Radford, 2018. 1 petaflop/s-day &~ 100 GTX 1080 GPUs for a day,

~ 500kwh
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Datasets

Data-set Year Nb. images Size
MNIST (classification) 1998 60K 12Mb
Caltech 101 (classification) 2003 9.1K 130Mb
Caltech 256 (classification) 2007 30K 1.2Gb
CIFAR10 (classification) 2009 60K 160Mb
ImageNet (classification) 2012 1.2M 150Gb
MS-COCO (segmentation) 2015 200K 32Gb
Cityscape (segmentation) 2016 25K 60Gb

.
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Data-set Year Size
SST2 (sentiment analysis) 2013 20Mb
WMT-18 (translation) 2018 7Gb
OSCAR (language model) 2020 6Tb

Figure Credits: Francois Fleuret
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Implementation
%,l}"'eolrechnnwd
Language(s) License Main backer

PyTorch Python, C++ BSD Facebook

TensorFlow Python, C++ Apache Google

JAX Python Apache Google

MXNet Python, C++, R, Scala Apache Amazon

CNTK Python, C++ MIT Microsoft

Torch Lua BSD Facebook

Theano Python BSD U. of Montreal

Caffe C++ BSD 2 clauses U. of CA, Berkeley

Figure Credits: Francois Fleuret
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We use PyTroch for this course

O PyTorch

http://pytorch.org
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Threshold Logic Unit

o First Mathematical Model for a neuron

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning

EoskioN

2

K

g s

E o

3 ®:;

%, c
%, 5
“e of Te :h“c\oq

23



Threshold Logic Unit

o First Mathematical Model for a neuron
o McCulloch and Pitts, 1943 — MP neuron
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Threshold Logic Unit

o First Mathematical Model for a neuron
o McCulloch and Pitts, 1943 — MP neuron

o Boolean inputs and output
f@) =1(w> xi+b>0)
i
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Threshold Logic Unit

o let’s implement simple functions
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Threshold Logic Unit

o let’s implement simple functions

o NOT
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Threshold Logic Unit

o let’s implement simple functions

o NOT
o NOT(z) =1(—x+0.5>0)
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Threshold Logic Unit

o let’s implement simple functions

o NOT
o NOT(z) =1(—x+0.5>0)

o OR
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Threshold Logic Unit

o let’s implement simple functions

o NOT
o NOT(z) =1(—x+0.5>0)

o OR
o OR(z,y)=1(z+y—0.5>0)
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Threshold Logic Unit

o let’s implement simple functions

o NOT

o NOT(z) = L(—z + 0.5 > 0)
o OR

o OR(z,y) =1(z+y—0.5>0)
o AND
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Threshold Logic Unit
o let’s implement simple functions
o NOT
o NOT(z) =1(—x+0.5>0)
o OR
o OR(z,y)=1(z+y—0.5>0)
o AND
o AND(z,y) =1(z+y—1.5>0)
24
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Threshold Logic Unit

o Can realize any Boolean function using TLUs
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Threshold Logic Unit

o Can realize any Boolean function using TLUs

o What one unit does? - Learn linear separation
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Threshold Logic Unit

o Can realize any Boolean function using TLUs
o What one unit does? - Learn linear separation

o No learning; heuristics approach
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Perceptron

o Frank Rosenblatt 1957 (American Psychologist)
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Perceptron

o Frank Rosenblatt 1957 (American Psychologist)

o Very crude biological model
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Perceptron

o Frank Rosenblatt 1957 (American Psychologist)

o Very crude biological model

o Similar to MP neuron - Performs linear classification
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Frank Rosenblatt 1957 (American Psychologist)

©

Very crude biological model

Similar to MP neuron - Performs linear classification

© © o

Inputs can be real, weights can be different for different i/p
components
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Perceptron :

o Frank Rosenblatt 1957 (American Psychologist)

o Very crude biological model

o Similar to MP neuron - Performs linear classification

o Inputs can be real, weights can be different for different i/p

components

1 when} , wiz; +b>0
f(x) =
0 else
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Perceptron

o For simplicity we consider +1 and -1 responses

1 when 2 > 0

o(x) =
(z) —1 else

f(x)=0o(wT -x+b)
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Perceptron

o For simplicity we consider +1 and -1 responses
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1 when 2 > 0

o(x) =
(z) —1 else

f(x)=0o(wT -x+b)

o In general, o(-) that follows a linear operation is called an activation

function
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Perceptron
o For simplicity we consider +1 and -1 responses

1 when 2 > 0

o(x) =
(z) —1 else

f(x)=0o(wT -x+b)

o In general, o(-) that follows a linear operation is called an activation

function
o w are referred to as weights and b as the bias
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Perceptron vs. MP neuron

o Perceptron is more general computational model
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Perceptron vs. MP neuron

o Perceptron is more general computational model

o Inputs can be real
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Perceptron vs. MP neuron

o Perceptron is more general computational model

o Inputs can be real
o Weights are different on the input components
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o Perceptron is more general computational model

o Inputs can be real
o Weights are different on the input components

@ Mechanism for learning weights!
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Weights and Bias

o Why are the weights important?

Bias b
Weights
Constant 1
\77/\ w,
- Weighted
‘;l/\) w, Sim
\ out
> — I =
inputs w /'
s > W, / Step Function

) —" Y
”

Figure credits: DeepAl
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Weights and Bias

o Why are the weights important?
o Why is it called ‘bias’? What does it capture?

Bios b
Weights
Constant [ 1
7\ w,
. Weighted
D W ke
Out
b — o —
- -
inputs - w, /
Xy — Va1 / Step Function

= 2 W
n

Figure credits: DeepAl
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Perceptron

Value

Parameter

Operation

I [ Iy

(==l
]

Figure credits: Francois Fleuret
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Perceptron

e B
I e ECH

Figure credits: Francois Fleuret
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Perceptron Learning algorithm

o Training data (z,,y,) € RP x -1,1,n=1,...,N

dl4cv-3/Neural Networks and Deep Learning
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Perceptron Learning algorithm

o Training data (z,,y,) € RP x -1,1,n=1,...,N

o Start with w=20
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Perceptron Learning algorithm

o Training data (z,,y,) € RP x -1,1,n=1,...,N

o Start with w =0
o While Iny such that ynk(wg - Xpk) < 0, update

Wkt1 = Wk + Ynk * Xnk

dl4cv-3/Neural Networks and Deep Learning
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Perceptron Learning algorithm

2

5o

o Training data (z,,y,) € RP x -1,1,n=1,...,N

o Start with w=20

o While Iny such that ynk(wg - Xpk) < 0, update
Wk+1 = Wk + ¥nk * Xnk

o Note that the bias b is absorbed as a component of w and x is
appended with 1 suitably
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Perceptron Learning Algorithm
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» Colab Notebook: Perceptron
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https://colab.research.google.com/drive/1y6X4MnS3NNmYr3MthOYsGdpB-A3ixhzg?usp=sharing

Perceptron Learning Algorithm

o Convergence result: Can show that after some iterations, no training
sample gets misclassified
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Perceptron Learning Algorithm

o Convergence result: Can show that after some iterations,

sample gets misclassified
o Stops as soon as it finds a separating boundary
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Perceptron Learning Algorithm

o Convergence result: Can show that after some iterations, no training
sample gets misclassified

o Stops as soon as it finds a separating boundary
o Other algorithms maximize the margin from boundary to the samples
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Next lecture..

o More on NNs: MLP, ...
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