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So far in the course...

Image classification: elementary task in CV
Linear classifier: scoring and loss functions
Optimization: Gradient descent
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What is DL?

Subset of ML that is essentially neural networks with more layers

“Crude” attempt to imitate the human brain in learning
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Classical ML vs. DL

Classical ML: Handcrafted features + learnable model
Need strong domain expertise
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Classical ML vs. DL

Deep Learning: Deep stack of parameterized processing (NN layers)
End-to-End learning
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Classical ML vs. DL

ANNs predate some of the classical ML techniques
We are now dealing with a new generation ANNs
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Neuron

About 100 billion neurons in human brain

Figure credits: Wikipedia
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History of Neural Networks

McCulloch Pitts neuron (1943) - Threshold Logic Unit

Donald Hebb (1949) - Hebbian Learning Principle
Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)
Frank Rosenblatt (1958) - created perceptron to classify 20X20
images
David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex
Paul Werbos (1982) proposed back-propagation for ANNs

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 11



History of Neural Networks

McCulloch Pitts neuron (1943) - Threshold Logic Unit
Donald Hebb (1949) - Hebbian Learning Principle

Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)
Frank Rosenblatt (1958) - created perceptron to classify 20X20
images
David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex
Paul Werbos (1982) proposed back-propagation for ANNs

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 11



History of Neural Networks

McCulloch Pitts neuron (1943) - Threshold Logic Unit
Donald Hebb (1949) - Hebbian Learning Principle
Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)

Frank Rosenblatt (1958) - created perceptron to classify 20X20
images
David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex
Paul Werbos (1982) proposed back-propagation for ANNs

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 11



History of Neural Networks

McCulloch Pitts neuron (1943) - Threshold Logic Unit
Donald Hebb (1949) - Hebbian Learning Principle
Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)
Frank Rosenblatt (1958) - created perceptron to classify 20X20
images

David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex
Paul Werbos (1982) proposed back-propagation for ANNs

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 11



History of Neural Networks

McCulloch Pitts neuron (1943) - Threshold Logic Unit
Donald Hebb (1949) - Hebbian Learning Principle
Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)
Frank Rosenblatt (1958) - created perceptron to classify 20X20
images
David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex

Paul Werbos (1982) proposed back-propagation for ANNs

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 11



History of Neural Networks

McCulloch Pitts neuron (1943) - Threshold Logic Unit
Donald Hebb (1949) - Hebbian Learning Principle
Marvin Minsky (1951) - created the first ANN (Hebbian Learning, 40
neurons)
Frank Rosenblatt (1958) - created perceptron to classify 20X20
images
David H Hubel and Torsten Wiesel (1959) demonstrated orientation
selectivity and columnar organization in cat’s visual cortex
Paul Werbos (1982) proposed back-propagation for ANNs

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 11



Deep Learning

Natural generalization to ANNs - Doesn’t differ much from the 90s
NNs

Computational graph of tensor operations that take advantage of
Chain rule (back-propagation)
SGD
GPUs
Huge datasets
Convolutions, etc.
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ILSVRC Error

Figure credits: Gershgorn, 2017
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What makes it work now?

Huge research and progress in ML

Hardware developments - CPUs/GPUs/Storage technologies
Piles of data over the Internet
Collaborative development (open source tools and forums for
sharing/discussions, etc)
Collective efforts from large institutions/corporations
. . .
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What makes it work now?

We have been doing a lot of ML already
Taxonomy of ML concepts: Classification, regression, generative
models, clustering, etc.
Rich statistical formalizations: Bayesian estimation, PAC, etc.
Understood fundamentals: Bias-Variance, VC dimension, etc.
Good understanding of optimization
Efficient large-scale algorithms
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Deep Learning - practical perspective

Doesn’t require a deep mathematical grasp(!?)

Makes the design of large models a system/software development task
Leverages modern hardware
Doesn’t seem to plateau with more data
Makes the trained models a commodity
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Compute getting cheaper

Figure Credits: Wikipedia
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Storage getting cheaper

Figure Credits: John C Mccallum
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AlexNet to AlphaGo: 300000X increase in
compute

Figure Credits: Radford, 2018. 1 petaflop/s-day ≈ 100 GTX 1080 GPUs for a day,
≈ 500kwh

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 19



Datasets

Figure Credits: François Fleuret
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Implementation

Figure Credits: François Fleuret
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We use PyTroch for this course
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Threshold Logic Unit

First Mathematical Model for a neuron

McCulloch and Pitts, 1943 → MP neuron
Boolean inputs and output

f(x) = 1(w
∑

i

xi + b ≥ 0) (1)
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Threshold Logic Unit

let’s implement simple functions

NOT

NOT(x) = 1(−x + 0.5 ≥ 0)

OR

OR(x, y) = 1(x + y − 0.5 ≥ 0)

AND

AND(x, y) = 1(x + y − 1.5 ≥ 0)
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Threshold Logic Unit

Can realize any Boolean function using TLUs

What one unit does? - Learn linear separation
No learning; heuristics approach
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Perceptron

Frank Rosenblatt 1957 (American Psychologist)

Very crude biological model
Similar to MP neuron - Performs linear classification
Inputs can be real, weights can be different for different i/p
components

f(x) =
{

1 when
∑

i wixi + b ≥ 0
0 else
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Perceptron
For simplicity we consider +1 and -1 responses

σ(x) =
{

1 when x ≥ 0
−1 else

f(x) = σ(wT · x + b)

In general, σ(·) that follows a linear operation is called an activation
function
w are referred to as weights and b as the bias
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Perceptron vs. MP neuron

Perceptron is more general computational model

Inputs can be real
Weights are different on the input components
Mechanism for learning weights!
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Weights and Bias

Why are the weights important?

Why is it called ‘bias’? What does it capture?

Figure credits: DeepAI
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Perceptron

Figure credits: François Fleuret
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Perceptron

Figure credits: François Fleuret
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Perceptron Learning algorithm

Training data (xn, yn) ∈ RD × −1, 1, n = 1, . . . , N

Start with w = 0
While ∃nk such that ynk(wT

k · xnk) ≤ 0, update
wk+1 = wk + ynk · xnk

Note that the bias b is absorbed as a component of w and x is
appended with 1 suitably

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 32



Perceptron Learning algorithm

Training data (xn, yn) ∈ RD × −1, 1, n = 1, . . . , N

Start with w = 0

While ∃nk such that ynk(wT
k · xnk) ≤ 0, update

wk+1 = wk + ynk · xnk

Note that the bias b is absorbed as a component of w and x is
appended with 1 suitably

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 32



Perceptron Learning algorithm

Training data (xn, yn) ∈ RD × −1, 1, n = 1, . . . , N

Start with w = 0
While ∃nk such that ynk(wT

k · xnk) ≤ 0, update
wk+1 = wk + ynk · xnk

Note that the bias b is absorbed as a component of w and x is
appended with 1 suitably

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 32



Perceptron Learning algorithm

Training data (xn, yn) ∈ RD × −1, 1, n = 1, . . . , N

Start with w = 0
While ∃nk such that ynk(wT

k · xnk) ≤ 0, update
wk+1 = wk + ynk · xnk

Note that the bias b is absorbed as a component of w and x is
appended with 1 suitably

Dr. Konda Reddy Mopuri dl4cv-3/Neural Networks and Deep Learning 32



Perceptron Learning Algorithm

Colab Notebook: Perceptron
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https://colab.research.google.com/drive/1y6X4MnS3NNmYr3MthOYsGdpB-A3ixhzg?usp=sharing


Perceptron Learning Algorithm

Convergence result: Can show that after some iterations, no training
sample gets misclassified

Stops as soon as it finds a separating boundary
Other algorithms maximize the margin from boundary to the samples
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Next lecture..

More on NNs: MLP, . . .
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